
BMTC Bus Timing Prediction
Aayush Grover

IMT2016005
Aayush.Grover@iiitb.org

Aditya Gulati
IMT2016052

Aditya.Gulati@iiitb.org

I. INTRODUCTION

A. The Problem Statement

Given the start position (latitude and longitude), end
position (it’s just latitude and longitude) and the time when
the trip started (date and time), give a good estimate of how
long a trip will take.

B. The Story Behind The Problem

The current BMTC timetable is unrealistic at best. The
assumption made is that the buses are moving at a constant
speed everyday, at all times. This is the easiest way to do it,
but traffic patterns vary a lot. Hence, this approximation ends
up giving a timetable which no one even looks at. The idea
behind this project is to fix this problem.

C. Why Is This Hard?

Traffic patterns vary a lot. We would need a lot of data to
ensure consistency. Working with a lot of data is hard. We
had only a small sample of 6000 buses and that alone could
not be loaded into our RAM. Dealing with the sheer volume
of data was one of the biggest challenges.

II. THE DATA

A. What Did The Data Have?

Our dataset came directly from GPS devices installed on
a bunch of BMTC buses. We had data from about 6000
buses over one week. The data we received had the following
columns:

• Bus ID : An ID associated with every bus
• Latitude : The latitude of the bus location
• Longitude : The longitude of the bus location
• Speed : The speed at which the bus was travelling
• Angle : The direction in which the bus was moving
• Timestamp : The time at which the entry was recorded

(date and time)

B. Challenges With The Data

The data was not directly usable. Listed below are some of
the challenges we faced with the data.

• The data was big - really big. It was about 14 GB making
it impossible to load in our RAM at one shot.

• The data was not clean. There were outliers and zero
values.

• The data was not structured - it was just locations with
time-stamps. There was no structuring by trips.

Through the document, we will describe our approach to
tackle these problems.

C. What Did We Do With This Data?

Our work with this data can be roughly divided into two
parts:

• Pre-process the data: Bring it into a form where we can
work with the data

• Engineer features: Come up with the best set of features
that describe the data

III. PRE-PROCESSING THE DATA

The following section contains details about the pre-
processing steps we took and our reasons for taking them.

A. Drop Unnecessary Columns

We were told by a domain expert (Prof. V N Muralidhara)
that the speed and angle data could not be completely relied
on and were hence dropped.

B. Remove Outliers

On analysing the latitude and longitude, we saw that most
of the data lies in the following range:

• Latitude: Between 12 and 13
• Longitude: Between 77 and 78

This makes sense since this is roughly where Bangalore lies.
However, we observed that there were some entries at (0, 0)
and some entries at (99, 999). These were clearly erroneous
values since we knew that the buses were in the vicinity of

https://www.iiitb.ac.in/faculty_page.php?name=vnmuralidhara


Fig. 1. Training Data (latitude vs longitude)

Bangalore. Also, given that the buses ply on fixed routes
within the city, the locations could not possibly be this far.
Thus, such entries were (safely) assumed to be device errors
and were dropped. To do this, we took the mean of the data
and dropped all values that were more that 10 away from the
mean (either latitude or longitude). Given the variation in the
data, 10 was a very safe margin.

Summary: Since the buses can’t move very far from the
mean, values which were obvious device errors were removed.

C. Pick a Subset of Buses

This was done for two reasons:
• There were a lot of buses - around 6000. This was a lot of

data to handle. So, as a starting point, we decided to take
pick (random) subset of the buses to train on. We picked
60 buses (about 13 lakh entries) as a starting point.

• Some of the buses were a part of the test set. We were
given a dictionary which told us which buses were a part
of the test set. These buses had to be removed from the
training set.

With a subset of the buses, it was easier to build a model. The
data we used was not representative of the original problem
but we believe this is an OK starting point. Once we have a
model that works well in a small part of the city, we could
just feed it with enough data to learn traffic patterns scross
the entire city.

Summary: Since the data was very large, a subset of
buses was taken as a starting point.

D. Split By Bus ID and Sort By Time

Our idea of a general mode for this problem is simple:
make a model which takes any two lat-long values and the

time when the first lat-long value was recorded. To generate
this data, we split our data according to the bus id. Once this
is done, each file is sorted by time. This is useful for the next
task.

E. Combine Consecutive Rows

The data we want to train our model on needed two
lat-long points and the time taken to travel between these
points. Since the data we had only contained locations of a
bus at a particular time, some processing had to be done. This
is where the previous step helped. As each bus was separated
by ID and sorted by time, we could pick consecutive rows
(since we can be sure they are the two closest points that are
a part of one buses trip). Had we not segregated the data by
bus ID, it would become hard two entries for one trip. Our
new row had the two lat-long values, the time stamp when
the first lat-long value was recorded and the time difference
between the two positions (the time taken is what we are
trying to predict). The bus ID was removed since it should
not have any bearing on the time taken. The model should
only learn about travel time from spatial and temporal features.

Summary: From the data split by bus ID, we combined two
consecutive rows to generate data with two positions in space,
the start time and the time taken to travel between them.
However, there is one more small problem to be fixed.

F. Interpolate Time

There was one glaring issue with our new data, the time
difference between any two entries for a bus was roughly
constant (about 10 seconds). This made sense since the devices
were designed to record the buses location at almost constant
intervals of time.
Since we were trying to predict the time difference this was
a problem. If more than 80% of our entries said that the time
difference was 10 seconds, it really didn’t matter what model
we used. Any model would just take in two lat-long values
and say the time taken to go between them was 10 seconds.
To fix this, we decided to interpolate our data. This was done
in two ways:

• Instead of picking only two consecutive entries, we
picked a row and any one of the next 5 rows. This way,
we extended the time difference from 10 seconds to a
value between 10 and 60 seconds. However, most of the
times were still multiples of 10.

• The next approximation we made to increase the spread
of times was to assume the bus travelled in a straight line
between the two positions. Then, we picked a random
number between 0 and 1 (from a uniform distribution)
and used this as the fraction of distance to consider. In
short, we picked a random fraction of the time and used
that as the time interval by adjusting the second lat-long
point by means of the section formula.



Thus, we ended up with a better spread of data. However, if
we are given two lat-long positions where the time taken in
reality to cover that distance is more than 60 seconds, our
model will struggle.
This will not be a problem in our case since we know that
the testing data has points that are not very far away.

Summary: To ensure that all our data doesn’t show a
time difference of 10 seconds, we took an arbitrary point
between the two lat-long points rather than the lat-long points
obtained from the data.

G. Shuffling The Data

Before we could go ahead with training with our model
(after engineering a few features) we shuffled the data so that
there was no hidden dependence captured in the order in which
the model sees this data.

IV. ENGINEERING FEATURES

To help our model perform better, we engineered the
following features:

A. Split Time Stamp Into Date and Time

The time-stamp we had was a string which was a
concatenation of the date and the time. For the model to be
able to use the information here, we need to encode it into
some sort of numbering. To start this off, we first kept the
date and time as two separate values.

B. Encode Time

To encode the time of the day, we started by splitting the
time stamp into three separate features: hours, minutes and
seconds. This sort of encoding might have worked. Regardless,
we felt that this was not the best that could be done. This sort
of encoding increased the dimensionality of the problem and
we wanted to avoid an unnecessary increase in the number of
dimensions.
We used the following encoding scheme instead:

minutes = minutes+ (1/60)× seconds

hours = hours+ (1/60)×minutes

Thus, we encoded the time into one number between 0 and
23.99.
To ensure that our data was split almost evenly across the
whole day, we made a box plot of the day of the week vs.
the time taken as seen in Figure 2. The box plot showed us
that our data is almost uniformly spread across all 24 hours
everyday.

Fig. 2. Day of the week vs. Time taken

Fig. 3. Time taken vs. Day of The Week

C. Encode Date

There are multiple patterns in traffic cycles based on
temporal features. There are daily, weekly, monthly and
yearly traffic cycles. However, we had data only for one
week. Thus the best we could try and do was capture the
traffic changes in one day. Since these cycles would vary
depending on the day of the week (weekdays have more
traffic than weekends, for example) we decided that the only
useful information that the date provided was the day of the
week. Thus, date was encoded as a number representing the
day of the week where 0 represents Sunday and 6 represents
Saturday.
Figure 3 shows the variation of time taken to travel against
the day of the week. This plot is on the data where the
time was interpolated (as described in section 3.6). What
was surprising for us was that the distribution was exactly
the same regardless of the day of the week. Regardless, we



Fig. 4. Distance vs. Time Taken

included this feature because it seemed logical. To us it seems
unreasonable to say the time taken to travel does not depend
on the day of the week.

Summary: Given that we had data only from one week, the
only useful information that the date provided was the day of
the week.

D. Calculate Distance

Distance between two points logically does impact the
time taken to travel between them. However, since we were
passing the lat-long values of the points, our initial thought
was that the model should be able to pick this up on its own.
The results were surprising. On calculating the haversine
distance and passing that as a feature, all our models
performed better (it makes sense that something like a
decision tree would need this since it can’t ask logical
questions about the data, but we did think that linear
regression would be able to pick it up). Thus, this was added
as a feature.
Figure 4 is a plot of the distance vs. time taken after
interpolating.

Summary: The distance between two points was added
as a feature to help the model pick up on importance of how
distance impacts time taken.

E. Model Traffic Cycles

Since we had data for a week we were trying to model the
traffic cycle over a week. Each day can be seen as having two
different traffic peaks - one in the mornings (when people leave
for work) and one in the evenings (when people leave work).
This is something that is well known about Bangalore traffic
(the only domain knowledge needed here is hours wasted
sitting in a car stuck in this traffic wondering about why you
got so late).
Thus, we can see that a week can be divided into 14 parts.
Since this is expected to repeat on a weekly basis, each week

can be seen as having a time period of 14. To model this
aspect of the time of the day, the following 28 features were
added:

sin_time_i = sin(
2× π × i

14
× encoded_time)

cos_time_i = cos(
2× π × i

14
× encoded_time)

where i ranges from 1 to 14.
These 28 features were expected to help the model see the
time of the day in terms of the cycles we expect. Turns
out, they did - adding these features made a significant
improvement to our score. Also, it goes without saying that
the old encoding of the time was no longer used as a feature
directly, it was passed to calculate these features and then
removed from the training data.

F. Binning Lat-Long Values

We divide our lat and long values into 1000 bins each
where each bin value is arithmetic mean of all the values in
the bin.

G. Our Final Dataset

The final data that we trained on had the following features:
• Lat1
• Long1
• Lat2
• Long2
• Day of the week
• Distance
• Encoded time features (28 of these)

V. MODELLING THE DATA

Listed below are the various models we tried, our reasons
for using them, and the scores we obtained. The error metric
used on Kaggle is RMSE. We split our data into a train and
validation set (75− 15 split). The test data was on Kaggle.

A. Linear regression

The time taken by the model was a non-linear parameter,
so initially we did not expect linear regression to work.
However, the time taken is sort of a sinusoidal function.
Adding the sinusoidal features described in section 4.5
should have taken care of this. Our assumption was that
these features should make the data linearly separable. Hence
we tried linear regression. The scores we obtained on the
validation set were:

• R2 Score: 0.00014255317949296575
• RMSE: 9.602649197273449

Clearly this did not perform very well. Our guess was that
our assumption of the data being linearly separable was



wrong. So we thought a tree based of approach might help.

B. Decision trees

As mentioned above, we thought the data might not
be linearly separable. Hence, we tried out decision trees.
Also, features like day of the week, which are not directly
correlated with the target variable can be used better here.
Below are the scores we obtained on the validation set:

• R2 Score: 0.12395405511599933
• RMSE: 9.349433833966861

These results are much better than linear regression. Our
guess for why this happened is the day of the week parameter
that we passed. Since trees worked so well, we thought an
ensemble of trees would work much better.

C. Random forest

Given the results we obtained with decision trees, we
expected an ensemble of trees to give us a much better result.
Below are the scores we obtained on the validation set:

• R2 Score: 0.13077148652226867
• RMSE: 9.312983911267393

The R2 score and the RMSE were marginally better. We
did expected an ensemble to perform much better. Out of
curiosity, we thought of using a boosting based approach.

D. Ada Boost

We did expect to get a better score on Ada Boost.
However, Ada Boost did not converge (even on our reduced
training set). We attributed this to having a very large data set
and hence did not wait for this model to be completely trained.

E. Our Final Model

Given the errors obtained from the above models, we
decided to use random forests. We did not try any other
mixtures of models for reasons described in detail in section
5.7. We knew that the main reason for a bad score was
lack of data and any other model would be built over these
basic models and would most probably suffer from the same
problems.

F. Running Our Model On The Test Data

Our model was trained to take two lat-long points as input
and predict the time taken to travel between them. The test
data was structured a little differently. It had a trip consisting
of 100 points from a trip that a bus took and the time when
the trip started.

Fig. 5. Training and Testing Data

To run our model on this data we picked two lat-long points
at a time and the start time of this trip (between two points)
was the start time of the previous trip plus the time taken
for that trip (time taken to travel between those two lat-long
points). For the first pair, the start time was given.
In this manner, we iterated over all 99 pairs and predicted the
time for the total trip.

Summary: Since the structure of the training and testing data
was different (slightly), we couldn’t directly run our model
on the test data. The differences are highlighted above.

G. Where our model failed

According to us, our model is performing very well. When
we test on our own data, we get a reasonable score. Also,
as a sanity check we took two arbitrary points within the
area we trained on and compared our models prediction to
the time predicted by Google Maps. The time difference was
within a minute.
However, when we submitted our predictions on Kaggle we
got an RMSE of about 15000. We believe this is because
the test data includes areas our model hasn’t been trained
on (we took a random subset). To check this, we plotted the
train data against the test data as seen in figure 5. There are
clearly areas which we haven’t covered. We believe these
areas are what caused our error. We don’t believe that this
means that are model is not generalizable, it just means that
the training data is not representative of the problem (which
is true, we’ve trained it only on 60 out of 6000 buses). So
our score doesn’t mean that our model is not good, it just
needs to see more data.
We do not have the computation power needed to train a

model on such large amounts of data. Instead, we thought
we could put our data on the cloud and let the computations
happen there. However, given the bandwidth we have, it



Fig. 6. Training and testing data with all buses

would take about 100 hours to finish the upload of the raw
data. Hence, we chose not to do that.
The best we could do was supply the model with all the bus
trips but running it overnight just gave us data for one day.
This data has been plotted in figure 6. As we can see, in
such a situation the model would perform well. However, our
model performed worse on this data since it had data only
from one day.

Summary: If we had more data and more computation
power, our model would perform much better than this. We
used a small training data set so that the computation is
feasible but that caused errors because there is no way that
the subset we took can be representative of the problem
(since the subset we took was too small).


	I Introduction
	I-A The Problem Statement
	I-B The Story Behind The Problem
	I-C Why Is This Hard?

	II The Data
	II-A What Did The Data Have?
	II-B Challenges With The Data
	II-C What Did We Do With This Data?

	III Pre-Processing The Data
	III-A Drop Unnecessary Columns
	III-B Remove Outliers
	III-C Pick a Subset of Buses
	III-D Split By Bus ID and Sort By Time
	III-E Combine Consecutive Rows
	III-F Interpolate Time
	III-G Shuffling The Data

	IV Engineering Features
	IV-A Split Time Stamp Into Date and Time
	IV-B Encode Time
	IV-C Encode Date
	IV-D Calculate Distance
	IV-E Model Traffic Cycles
	IV-F Binning Lat-Long Values
	IV-G Our Final Dataset

	V Modelling The Data
	V-A Linear regression
	V-B Decision trees
	V-C Random forest
	V-D Ada Boost
	V-E Our Final Model
	V-F Running Our Model On The Test Data
	V-G Where our model failed


